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Abstract

A constitutive model is derived for the viscoelastic and viscoplastic behavior of amorphous glassy polymers at
isothermal loading with small strains. It is assumed that an amorphous polymer is strongly heterogeneous at the micro-
scale. It is treated as an ensemble of cooperatively rearranging regions (CRR) which relax at random times as they are
thermally agitated. CRRs are bridged by links (long chains which form less cohesive space between relaxing domains
and transform the macro-strain in a specimen to rearranging regions). With the growth of strain, some links break
(which reflects partial disentanglement of chains and scission of bonds in the less cohesive domains). This results in
nucleation and aggregation of quasi-point defects (QPD) which provide some freedom for CRRs to displace with respect
to each other. At the micro-level, the viscoelastic response of a polymer is reflected by rearrangement of CRRs, whereas
the viscoplastic behavior is associated with coalescence of QPDs and creation of isolated islands of CRRs. Stress—strain
relations for uniaxial loading are developed using the laws of thermodynamics. The constitutive equations are verified
by comparison with experimental data for polycarbonate and poly(methyl methacrylate) at ambient temperature. Fair
agreement is demonstrated between results of numerical simulation and observations in relaxation tests and in tests with
constant strain rates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with modeling the viscoelastic and viscoplastic responses of amorphous glassy
polymers at isothermal loading with small strains. We aim to develop constitutive equations which (i)
correctly describe observations in uniaxial relaxation tests and in tests with constant strain rates, (ii) are
based on a physically plausible concept at the micro-level, and (iii) account for the effect of plastic de-
formation on the characteristic times of relaxation.

Changes in elastic moduli and relaxation spectra of viscoelastic materials loaded in the sub-yield and
post-yield regions are observed for several polymeric glasses. G’Sell et al. (1989) demonstrated that cyclic

Tel.: +972-7-623-1313; fax: +972-7-623-1211.
E-mail address: aleksey@cs.bgu.ac.il (A.D. Drozdov).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00146-9



8286 A.D. Drozdov | International Journal of Solids and Structures 38 (2001) 8285-8304

shear straining of polycarbonate (PC) with the maximal shear of the order of unity weakly affects the
storage modulus, but dramatically increases the loss tangent in the entire o-region. Yoshioka et al. (1994)
evidenced that at loading of poly(methyl methacrylate) (PMMA) with a constant strain rate, the storage
modulus decreases and the loss tangent increases with the longitudinal strain. An increase in the loss
tangent of PMMA with the strain level was confirmed by David et al. (1997) in experiments on plain strain
compression. Changes in the elastic moduli begin in the sub-yield region and increase with the growth of
strain. Govaert and Peijs (1995) showed that statically applied tensile stress caused an increase in the
storage modulus and a decrease in the loss tangent for poly(vinyl alcohol) fibers. Pegoretti et al. (2000)
observed a noticeable increase in the recovery rate for poly(ethylene terephthalate) with the growth of the
maximal strain in loading—unloading tests with constant strain rates.

To the best of our knowledge, the effect of plastic deformation on relaxation spectra of glassy polymers
has not yet been accounted for by existing constitutive models. The viscoelastoplastic response of glassy
polymers is conventionally described using stress—strain relations based on the back-stress concept. The
back stress (internal stress or equilibrium stress) is thought of as a measure of response of the surrounding
material to plastic flow in locally transformed sites (shear micro-domains (SMD)). The theory of back
stresses (which is purely phenomenological) may be applied to predict the viscoplastic behavior of poly-
mers, as well as metals and other solids (Krempl, 1987). There are two approaches to the description of
evolution of the back-stress tensor under loading. According to the first, nonlinear differential equations are
introduced for the rate of changes in this tensor (Krempl et al., 1986; Krempl, 1996). A shortcoming of this
method is that no rational explanation is provided why one or another nonlinear function is introduced
in the governing equations and what is the physical meaning (at the micro-level) of adjustable parameters
in the stress—strain relations. The other approach is based on the assumption that the response of the
surrounding material (slowing down of the plastic flow in SMDs) may be described in the framework of the
statistical theory of rubber elasticity (Haward and Thackray, 1968). The advantage of this concept is that it
implies explicit formulas for the back stress (Boyce et al., 1988; Boyce and Arruda, 1990; Tomita and
Tanaka, 1995; Spathis and Kontou, 1998). However, its physical basis (application of the theory of entropic
elasticity to polymeric glasses) is questionable. In particular, the evolution of the back stress is based on the
assumption that plastic flow implies alignment of long chains, which results in an increase in the equili-
brium stress and a decrease in configurational entropy (which characterizes the level of disorder in a
polymeric glass). The conclusion about a decrease in the configurational entropy contradicts observations
(G’Sell et al., 1989) which evidence an increase in the configurational enthalpy of PC after several loading—
unloading cycles in the post-yield region. The hypothesis about alignment of chains may be quite acceptable
at large strains, but fitting adjustable parameters of the model to experimental data requires the alignment
process to begin in the vicinity of the yield point (at strains of 5-10%). This result disagrees with bire-
fringence measurements: changes in birefringence of polypropylene under uniaxial tension become evident
only at the draw ratio exceeding two (Uehara et al., 1996), and small angle X-ray scattering, which does not
reveal any changes in the diffraction index of polyethylene at strains <20%.

The purpose of this study is to develop constitutive equations for the viscoelastic and viscoplastic be-
havior of glassy polymers which does not employ the concept of equilibrium stresses. Stress—strain curves
for glassy polymers uniaxially loaded with constant strain rates are conventionally divided into four regions
(Mangion et al., 1992): (i) a domain of a linear viscoelastic response, (ii) a region where the stress—strain
curve reaches its maximum and begins to decrease (upper yield), (iii) an interval of strains where the stress
decreases and reaches a plateau (lower yield), and (iv) a domain of a gradual increase in stress prior to
failure. The study is confined to the response of amorphous polymers within the first two regions.

Our approach is based on the theory of cooperative relaxation (Adam and Gibbs, 1965). According to it,
an amorphous polymer is treated as an ensemble of cooperatively rearranged regions (CRR) connected by
links. A CRR is thought of as a globule consisting of scores of neighboring strands (Sollich, 1998) which
change their position simultaneously because of large-angle reorientation of segments (Dyre, 1995). The
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characteristic length of a relaxing region amounts to 1-2 nm in the vicinity of the glass transition tem-
perature 7, (Arndt et al., 1997; Rizos and Ngai, 1999) and increases to about 4 nm at room temperature
(Mermet et al., 1996). Cooperatively relaxing regions are identified with “isolated more cohesive regions”
revealed by low-frequency Raman scattering of PC and PMMA loaded in the post-yield region (Achibat
et al., 1995; Mermet et al., 1996).

In the stress-free state, all CRRs are connected with one another by links which ensure that the macro-
strain in a specimen coincides with the micro-strains in relaxing regions. The links are thought of as long
chains not included in CRRs (in the quasi-rubbery state) bridged by physical crosslinks, entanglements and
van der Waals forces. Links between CRRs are associated with the penetrating “less cohesive space be-
tween more cohesive domains” (Mermet et al., 1996). With an increase in stress, some links break (which
reflects partial disentanglement of chains and bond scission) providing excess “freedom” for relaxing re-
gions (which can move with respect to each other). Failure of links consists of two stages (Coulon et al.,
1986; G’Sell et al., 1989; Mangion et al., 1992): (i) nucleation of defects driven by annihilation of neigh-
boring links (quasi-point defects (QPD) of high molecular mobility) and (ii) coalescence of QPDs which
results in (partial) percolation of the ensemble of links and creation of shear micro-domains (temporary
islands of CRRs which deform independently of the bulk material). Shear micro-domains are associated
here with “fine slip bands” (David et al., 1997) where plastic flow occurs. Because healing (reformation) of
links is not taken into account, the model is restricted to active programs of loading (without unloading).

The exposition is organized as follows. Section 2 focuses on the kinetics of rearrangement of CRRs and
on thermodynamic potentials for an amorphous polymer. In Section 3 constitutive equations are derived
for the viscoelastic and viscoplastic responses of glassy polymers using the laws of thermodynamics. The
stress—strain relations are verified in Section 4 by comparing results of numerical simulation with experi-
mental data in relaxation tests and in tests with constant strain rates on PC and PMMA. Some concluding
remarks are formulated in Section 5.

2. A model for the viscoelastic response

In the phase space, a CRR is modeled as a point trapped in its potential well on the energy landscape
(Dyre, 1995). At random times, the point hops from the bottom level of its potential well to higher energy
levels as it is activated by thermal fluctuations. According to the transition-state theory (Goldstein, 1969), a
CRR relaxes when it reaches some liquid-like (reference) energy level in a hop. The viscoelastic response of
a polymer is modeled as successive rearrangement of CRRs trapped in potential wells with various depths.

The zero energy level on the energy landscape is chosen at the position of the reference state for a stress-
free medium. The depth of a potential well with respect to this energy level is determined by its energy
w > 0. It is assumed that the position of the liquid-like state is not fixed and coalescence of QPDs decreases
the current reference energy level. Changes in the position of the liquid-like state with respect to the energy
landscape are determined by the descent energy €(¢). The function Q(¢) describes a decrease in relaxation
times induced by viscoplastic deformation.

Denote by Xy the number of CRRs per unit mass. The quantity X; is assumed to be constant and in-
dependent of the loading history. Let X (¢,7,w) be the current concentration of CRRs in cages with po-
tential energy w which had last been rearranged before instant 7<¢ The function X(z,7,w) entirely
determines the rearrangement process. In particular, X (¢, ¢, w) is the concentration of CRRs (per unit mass)
in traps with potential energy w at instant z. The conservation law for the numbers of CRRs with various
energies implies that X (¢, ¢, w) is independent of time. This quantity is expressed in terms of the probability
density of traps, p(w), by the formula

X(t,1,w) = Xop(w). (1)
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Let ¢g(z)dz be the probability for a CRR to reach (in a hop) an energy level belonging to the interval
[z,z + dz]. Referring to Bouchaud et al. (1998), we adopt the exponential distribution

4(z) = aexp(—o),
where o is a material constant. The probability to reach the reference state in an arbitrary hop reads
0w = [ gle)d = expla(@() ~w)]
w—E(t

Denote by I'y the attempt rate (the average number of hops in a cage per unit time). The rate of rear-
rangement R is defined as the product of the attempt rate I'y by the probability of reaching the liquid-like
state in a hop Q,

R(t,w) = I'(t) exp(—ow), I'(t) = I'yexp[aQ(r)]. (2)
Equating the relative rates of rearrangement to the function R, we arrive at the differential equations

oX ’X oX

E(t,o,w) = —R(t,w)X(¢,0,w), %(tgc,w) = —R(t, w)a(tgr,w). (3)

The physical meaning of Eq. (3) is discussed by Drozdov (1999). Integration of the first equality in Eq. (3)
with the initial condition (1) implies that

X(2,0,w) = Xop(w) exp {— /OtR(s7 w)ds} (4)
Integrating the other equality in Eq. (3), we find that

S ) = Flwyexp | - [ Rswas) )
where

F(t,w) = a—X(t,r,w)

3 (6)

=t

According to Eq. (6), the function F(¢,w) equals the number of CRRs with energy w (per unit mass) re-
turning to their cages after rearrangement at instant z. Neglecting the duration of a hop (a few picoseconds
(Dyre, 1999)) compared to the characteristic time of relaxation in the sub-7, region, we equate F'(¢, w) to the
number of CRRs (per unit mass) rearranged per unit time

LoX

oxX
F(t,w) = —E(LQW) —/0 %(I,r,w)dr.

Substitution of expressions (3)—(5) into this equality results in the Volterra equation

F(l,w)—R(t,w){Xop(w)exp {_ /0 [R(s,w)ds} + /0 lF(T,w)exp[— / tR(s,w)ds]dr}. (7)

To solve Eq. (7), we set
Z(t,w) = F(t,w)exp [/IR(s,w)ds]. (8)
0

It follows from Egs. (7) and (8) that the function Z obeys the integral equation
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20,) = Rt.0)[Xopto) + [ 2(cw)ae]. )

Eq. (9) implies that

2(0,w) = Xop(w)R(0, w). (10)
Differentiation of Eq. (9) with respect to time results in

oz OR !
o (t,w) = a (t,w) {Xop(w) —|—/ Z(z, w)dr} +R(t,w)Z(t,w).

0

Combining this equality with Eq. (9), we arrive at the differential equation

oz Z(t,w) OR

a(t,w) :R(t,w) E(I,w)—FR(t,w)Z(t,w). (11)

We divide both parts of Eq. (11) by Z(z,w), integrate the obtained equality from zero to ¢, and find that

o)~ 0 20 || 0]

This equality together with Eq. (10) implies that

Z(t w) = Xop(w)R(1, w) exp { / lR(s,w)ds} (12)
0
Combining Egs. (5), (8) and (12), we obtain
ox - R(s,w)d 13
(11 w) = Xop(w)R(z, W) exp [— / R(s,w) s} (13)

Relaxing regions are treated as linear elastic media with the mechanical energy
Wo(t, T, w) = Legg (1, 7). (14)

Here c¢ is the rigidity of a CRR and ¢ is the strain from the stress-free configuration at instant 7 (the last
instant when the CRR was rearranged) to the deformed configuration at time ¢. For simplicity, we suppose
that c is independent of depth, w, of the potential well where the CRR is trapped. The latter means that the
parameter ¢ is thought of as an average rigidity of CRRs in a virgin specimen.

Because a CRR totally relaxes when it reaches the liquid-like energy level, its stress-free state coincides
with the deformed state of the ensemble of CRRs at the instant of rearrangement. This means that the
strain gy from the stress-free state of a relaxing region to its deformed state at time 7 is given by

eo(t,7) = &) — &(7), (15)

where ¢ is the micro-strain in a CRR (which is assumed to be the same for different relaxing regions).
Summing the mechanical energies of CRRs and neglecting the energy of their interaction, we find from
Eqgs. (14) and (15) the strain energy density of a polymer (per unit mass)

W(t) = %c |:82(Z) /OmX(t,O,w)dw + /Ot (s(r) — &(7))*dz /000 E;if((t, r,w)dw} (16)

Straining of glassy polymers in the yield region results in rather weak changes in temperature of specimens.
For examples, we refer to experimental data for PC (Matsuoka and Bair, 1977) which demonstrate that
temperature is altered by 0.6 K for tension with the strain rate 5.2 x 107> min~! and the maximal strain 0.12
and by 0.75 K for shear with the strain rate 2.8 x 1072 min~! and the maximal strain 0.60. An increase in
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temperature during necking of a PC specimen at uniaxial tension and its further stretching up to the
maximal strain 0.35 with the strain rate 1.8 x 107> min~! is estimated as 5 K (Zhou et al., 1995). Adopting
the conventional value of the coefficient of thermal expansion for glassy PC, 2.2 x 10~* K~!, and PMMA,
2.6 x 107* K~! (Schwarzl, 1990), we find that thermal expansion induced by the increase in temperature
does not exceed 0.001, which is negligible compared to strains in the yield region. Measurements for several
solid polymers demonstrate that changes in temperature in the range of about 30 K practically do not affect
the specific heat x (Liu and Harrison, 1987). Based on these observations, we propose the following ex-
pression for the free (Helmholtz) energy per unit mass:

T
T: 'P()—F(S()—K)(T—To)"‘KTlnF“r W, (17)
0

where ¥, and S are the free energy and the entropy (per unit mass) in the stress-free state at the reference
temperature 7p, and « is a constant.

Given a strain history ¢(¢), expression (16) is determined by the only function: the probability density of
traps with various depths, p(w). To reduce the number of adjustable parameters, we confine ourselves to the
quasi-Gaussian ansatz

W2

p(w) =3 —CXp (_ﬁ

T

) (w=0), pw)=0 (w<0), (18)

where X is an adjustable parameter (an analog of the standard deviation of energy for CRRs). An analog of
Eq. (18) was suggested by Dyre (1995) in the framework of a random energy model.

3. A model for the viscoplastic response

Our main hypothesis is that nucleation and aggregation of QPDs are strongly distinguished in time:
under active loading, nucleation of QPDs occurs at relatively small (but nonzero) stresses, whereas their
coalescence and creation of shear micro-domains take place in the vicinity of the yield point, when the
nucleation process is practically completed. This hypothesis is in agreement with observations on poly-
amino-bismaleimide which demonstrate that QPDs appear clearly below the apparent yield point (Coulon
et al., 1986). The nucleation process comes to its end in the sub-yield region when the number of QPDs is
sufficiently high and creation of a new QPD requires more energy than aggregation of two existing QPDs.

This scenario implies that yield of a glassy polymer and its post-yield response are mainly associated with
coalescence of defects. As a result, the nucleation stage may be excluded from the model, and its effect
on the onset and growth of plastic strains may be accounted for by the introduction of some “average”
characteristics of the material. We introduce two parameters: the effective strength of an ensemble of links,
go > 0, and the effective rigidity of a CRR, ¢, > 0. The strength g is defined as the absolute value of the
average stress that links can bear to prevent mutual displacements of CRRs at the stage of nucleation of
defects (partial disentanglement of the “less cohesive space’). The rigidity ¢, is determined as the average
rigidity of a CRR that correctly predicts the response of a polymer (at the macro-level) in the region of
linear viscoelasticity (disentanglement and scission of chains in the less cohesive domain provide extra
freedom for relaxing regions and make CRRs less tightened). During the nucleation process, go and ¢
decrease with an increase in the number of quasi-point defects. Because the rate of increase in the number of
QPDs is a nonmonotonic function of the current stress ¢ which vanishes at ¢ =0 and ¢ = g, (0, is an
apparent yield stress) and which reaches its maximum within the interval (0, g,), the parameters g, and ¢,
are entirely determined by the total number of QPDs. The number of nucleated defects at the beginning of
the stage of their aggregation is small for rapid loading and low temperatures (because the time required for
the stress ¢ to reach its critical value g, is small, whereas the rate for nucleation of QPDs is finite) and it is
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large for slow loading and relatively high temperatures (in the sub-7, region). This implies that g, and ¢
should be decreasing functions of temperature and strain rate.

Referring to conventional theories of viscoplasticity, we postulate that the total macro-strain e equals the
sum of the viscoelastic strain €. and the viscoplastic strain ¢,. At the micro-level, the viscoelastic strain e is
associated with deformation of CRRs, whereas the viscoplastic strain ¢, reflects the displacement of CRRs
with respect to one another. Assuming the macro-strain e, to be homogeneously distributed among relaxing
regions, we set

& = €,
which results in the formula
e(t) = €(t) — & (1). (19)

In the region of plastic flow (associated with coalescence of local defects), the strength of an ensemble of
links, g > 0, monotonically decreases. The relative rate of the decrease in g is assumed to be proportional to
the rate of viscoplastic strain,

Lde _ ]de

Z - 2
g dt dt |’ (20)

where k > 0 is a material function. To simplify the model, we treat k is a constant which is independent of
the loading history. To formulate the initial condition for Eq. (20), we suppose that the initial strength g(0)
coincides with the average strength of the ensemble of links at the end of the stage of nucleation of QPDs,

g(0) = go. (21)

Eqgs. (20) and (21) describe changes in the strength of less cohesive space between CRRs (which is deter-
mined by the average strength g) driven by the growth in the concentration of islands of quasi-point defects
(which is characterized by the viscoplastic strain ¢).

To describe the evolution of viscoplastic strain e,, we use the laws of thermodynamics. For uniaxial
loading, the first law of thermodynamics implies that

do de 0
paza—e——x—&-pr, (22)

where p is a constant mass density in the stress-free state at the reference temperature 7y, @ is the internal
energy per unit mass, o is the stress, y is the heat flux, and r is the heat supply per unit mass. The Clausius—
Duhem inequality is given by
do dS 0 /gy or
S OR
det de  ox\T T
where S is the entropy and Q is the entropy production per unit mass. Bearing in mind that
0 (,{) 10y y oT
ox\T
and excluding the derivative 0y/0x from Egs. (22) and (23), we find that
do dS d® 1/ de y oT
—=T———+4+—-(o——>=—1]=0.
AT dt+p("dt 72 6x>

>0, (23)

T

This inequality together with the conventional formula
& =Y+ ST,
implies that
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do dr d¥ 1/ de y oT
r—==8——-——+—|o——>=—]=0 24
a S dt+p<6dt T2 6x> (24)
The amount Q is split into the sum of two quantities,
0=0.+ Qp7 (25)

where Q. determines the entropy production induced by rearrangement of CRRs and Q, describes the
entropy production driven by plastic flow. For a steady-state plastic flow, the parameter Q, is given by the
conventional formula

00 = [ GO (26)
where
1 ep (1)
0= [ ote o) 27)

is the plastic work per unit mass. For a transient regime of loading (in the vicinity of the yield point) when
the stationary flow is not yet reached, Eq. (27) should be modified in such a way that in the limit of sta-
tionary plastic straining, the new formula turns into the conventional relationship. We assume that after the
interval of transitory plastic deformation the rate of viscoplastic strain, é, = de,/dt, reaches the strain rate,
¢ = de/dt, and the strength of an ensemble of links, g, vanishes,

de, de
FTERT g—0 (t — 00). (28)

This implies that a modified expression for the plastic work may be taken in the form

o0 (¢ (¢ 1/m epl1)
Ay =2 /0 (%’”) o(7) dey (x) + /0 g()de,() |, (29)

p é(t)

where m is a positive parameter. Eq. (29) implicitly presumes that the sign of the rate of plastic strain, ¢,
coincides with the sign of the strain rate, é. The first term in Eq. (29) determines the plastic work within the
transient region (at |€,| < |€| this work is less than the plastic work for the developed plastic flow). The other
term in Eq. (29) equals the plastic work of the stress produced by nonbroken links between CRRs. Because
the effective strength of links, g, is thought of as a positive quantity, the sign “+” in Eq. (29) stands for
tension and the sign “—"" for compression. It is worth noting that under condition (28), the last term in Eq.
(29) tends to a constant which does not affect the differential inequality (24).

It follows from Egs. (16), (17) and (19) (where the rigidity of a CRR, ¢, is replaced by the average ri-
gidity, ¢j) that

dy
?(t) = [So +cln

T(t)] c(li_f B+ Tﬁt) [de de,

o w03 (t)} —J(1), (30)

where
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70) = peo(e) = (1) [ X0+ [ (600 = 4(0) = (e — () [ S (i
10 = 3 €)= (0)” [~ Rewx(0.0.0)dw-+ [ () = 0) = (e0) = )

< [ RO G i G1)

Because R and X are nonnegative functions, Eq. (31) implies that the function J(¢) is nonnegative as well.
Substitution of Egs. (25), (26), (29) and (30) into Eq. (24) results in

do. z(t) oT T(t)} dr ; a(t) — 1(¢) de

ds (t): ()_pT2<l‘>a(t)+ |:S(t)_SO_K1nTb a() ) a(t)

. 1/m
+%lnn—am<%%> 4gm1%ﬂﬂ>0

Applying the conventional reasoning to this inequality (Coleman and Gurtin, 1967), we find that the co-
efficients at the derivatives d7'/d¢ and de/d¢ should vanish, which, together with Eq. (31), implies that
T(1)

St =8y +xIn—=,0(t)
Ty

T(1)

o0 t o0 6X
— pey {(e(z) — (1) /0 X(£,0,w)dw + /0 ((lt) = 6(1)) — (€(x) — (1)) )dr /0 = r,w)dw}
(32)
According to Eq. (32), the Clausius—Duhem inequality reads

1/m
do. y or 1 ép de,
5 =7 pT? ax+p [G<1 (é TEq >0 (33)

This inequality is satisfied for an arbitrary loading program, e = ¢(¢), provided that
1. the heat flux y obeys the Fourier law with a positive thermal diffusivity 4,

or

a )

2. the last term in Eq. (33) vanishes.

The latter condition is tantamount to the law of plastic flow

1= =4

de,,

=0, o] <20
T =500 o) > 0 (34

The second equality in Eq. (34) is similar to the constitutive relation for the rate of plastic strain suggested
by Krempl (1996) within the framework of the viscoplasticity theory based on overstress and by Hasan and
Boyce (1995) based on the concept of thermomechanically activated inelastic flow. There is, however, an
important difference between Eq. (34) and previous relations. Unlike Krempl (1996), Eq. (34) does not
contain any additional nonlinear function of viscoplastic strain, whose experimental determination may be
a complicated task. In contrast with Boyce et al. (1988) and Hasan and Boyce (1995), Eq. (34) provides a
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power law for the rate of plastic strain (whereas previous studies employed exponential laws). Comparison
of these two phenomenological laws (Zhang and Moore, 1997) demonstrates that the power law ensures
better fitting of observations for glassy polymers.

Given a loading program e = ¢(¢), the stress () is determined by Eq. (32), where the function X (¢, 7, w)
is found from Eqs. (4) and (13) and the function €,(¢) obeys Eq. (34). Formulas (4) and (13) contain the
function R(¢,w) which is determined in terms of the descent energy of the liquid-like state, 2, by Eq. (2).
The descent in the position of the reference state on the energy landscape is assumed to be proportional to
the plastic work per unit volume,

dQ dep

where { is an adjustable parameter. As a result, we arrive at the stress—strain relations determined by the
quantities: I'y, X, go, k, m, { and Ey = pcoXy (without loss of generality, we set o = 1). The inverse to the
attempt rate I'y is the characteristic time of stress relaxation, X~ determines the relaxation spectrum, g, and
E, characterize the strength of the ensemble of links and the elastic modulus at the end of the stage of
nucleation of defects, k is the rate of decrease in the strength of less cohesive space driven by viscoplastic
flow, m is the exponent in the power law (34) for the rate of viscoplastic strain, and { describes the effect of
plastic flow on the relaxation spectrum. The number of adjustable parameters in the model is essentially less
than that in conventional stress—strain relations for viscoelasticity and viscoplasticity of glassy polymers,
see, e.g., Hasan and Boyce (1995), Krempl et al. (1986) and Spathis and Kontou (1998).

4. Comparison with experimental data

We begin with the analysis of a standard relaxation test with

0, ¢<0,

where ¢ is essentially less than the yield strain €,. Assuming viscoplastic strains to vanish (e, = 0, Q = 0),
we substitute Egs. (2), (4), (13) and (36) into Eq. (32) and find that

B0)=Ea | plw)exp| = Turexp( — wiidw. (37)

where E(¢) = a(t) /e is the current Young modulus. Egs. (18) and (37) are determined by three constants: Ej,
I'y and 2.

To find these parameters, we approximate experimental data in a tensile relaxation test on PC with the
strain ¢y = 0.01 at ambient temperature. For a description of specimens and the experimental procedure, we
refer to Colucci et al. (1997). Given E, the parameters Iy and X are determined using the steepest-descent
procedure. The initial Young modulus £, is found by the least-squares algorithm. Fig. 1 demonstrates fair
agreement between observations and results of numerical simulation.

The fitting procedure is repeated for PMMA loaded with the strain ¢y = 0.005 at room temperature. To
increase the interval of time for the tensile relaxation test, we match the relaxation master curve obtained by
shifts of experimental data measured at various aging times. A detailed description of specimens and the
experimental procedure is provided by Cizmecioglu et al. (1981). Fig. 2 shows good correspondence be-
tween observations and results of numerical analysis. Adjustable parameters of the model found by fitting
observations in relaxation tests for PC and PMMA are listed in Table 1.
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Fig. 1. The elastic modulus E (GPa) versus time 7 (s) for PC in a tensile relaxation test with the strain ¢y = 0.01. (O) experimental data
(Colucci et al., 1997). (=) results of numerical simulation.
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Fig. 2. The elastic modulus £ (GPa) versus time ¢ (s) for PMMA in a tensile relaxation test with the strain ¢, = 0.005. (O) experimental
data (Cizmecioglu et al., 1981). (=) results of numerical simulation.

We proceed with the approximation of experimental data in uniaxial tests with a constant strain rate,

e(f) = {(.)’ <0, (38)

ét, t>0.

Substitution of Egs. (2), (4), (13) and (38) into Eq. (32) results in
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Table 1

Adjustable parameters found by matching observations in relaxation tests
Polymer E, (GPa) Ty (s7YH z
PC 2.19 0.150 58.0
PMMA 2.03 0.024 25.4

Table 2

Adjustable parameters for two grades of PC found by matching observations in tests with constant strain rates
Reference Loading € (min~') 2 k {
Tervoort et al. (1996) Tension 0.006 10.9 82.0 0.7
Tervoort et al. (1996) Tension 0.06 11.5 82.0 0.7
Tervoort et al. (1996) Tension 0.6 12.0 82.0 0.7
Quinson et al. (1996) Compression 0.1 16.6 70.0 3.1

a(t) = EO{(éot —&p(1)) /Oocp(w) exp ( - T, /Or exp(Q(s) — w)ds) dw

10 [ (=0 = (elt) — () [ expl@(0) ~ wpto)
X eXp [— Iy [t exp(Q(s) — w)ds} dw}. (39)

To reduce the number of adjustable parameters, we set m = 4 for all experimental data. Our numerical
analysis reveals that the stress—strain curves are weakly affected by the quantity m.

We begin with fitting observations for PC at room temperature. For a description of the experimental
procedure, see Tervoort et al. (1996). The adjustable parameters Ey, I'y and X are taken from fitting ob-
servations in the relaxation test (Table 1). First, we match experimental data in a test with the maximal
strain rate ¢, = 0.01 s~!. The quantities gy, k and { are found by the trial-and-error method to ensure the
best approximation of experimental data. Afterwards, we fix the values of k and { (Table 2) and match
observations in other tests using the only adjustable parameter gy. Fig. 3 demonstrates fair agreement
between experimental data and results of numerical simulation. The effect of strain rate ¢, on the parameter
go 1s shown in Fig. 4. Experimental data are fairly well approximated by the function

go — Ay —+ a IOg éo, (40)

where the parameters a; are found by the least-squares technique.

To assess the level of plastic strain, we repeat calculations for PC in a uniaxial compressive test at
ambient temperature. The experiment consists of loading with the strain rate ¢y = 0.1 min~!, rapid un-
loading with the strain rate ¢, = 1.0 min~!, waiting for a time At in the stress-free state, and measurement of
the residual strain ¢.. A detailed description of the experimental procedure can be found in Quinson et al.
(1996). To approximate the stress—strain curve, we use the values of Ej, I'; and X determined in the re-
laxation test (Table 1). The parameters gy, k and { found by using the trial-and-error method are listed in
Table 2. Fig. 5 demonstrates good agreement between results of numerical analysis and observations. Small
deviations between the experimental data and the results of simulation at strains exceeding 0.15 may be
ascribed to the geometrical nonlinearity of deformation and alignment of chain segments, the issues which
are beyond the scope of the present study. The viscoplastic strain ¢, is plotted versus the longitudinal strain
e in Fig. 6 which shows that the viscoplastic strain is extremely small in the region of linear viscoelasticity
and dramatically grows in the post-yield region (in accordance with the intuitive picture of viscoplastic
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Fig. 3. Tensile stress ¢ (MPa) versus tensile strain ¢ for PC in a test with the strain rate ¢, (s™'). (O) experimental data (Tervoort et al.,
1996). (=) results of numerical simulation. Curve 1: ¢y = 1072; curve 2: é = 1073; curve 3: ¢ = 107*.
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Fig. 4. The average strength of links at the beginning of the stage of coalescence of defects gy (MPa) versus the strain rate ¢, (min~") for
PC. (Q) treatment of observations (Tervoort et al., 1996). (==) approximation of the experimental data by Eq. (40) with ¢y = 12.14 and
a) = 0.55.

deformation). The parameters k and { found by fitting data for the two grades of PC are relatively close to
each other (Table 2). For example, the difference in k is 14.6% only. The discrepancies in g, and { are
higher; they may be associated with the difference in the straining state (tension versus compression), as well
as with the difference in the molecular weight for these two grades of PC.
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Fig. 5. Compressive stress ¢ (MPa) versus compressive strain ¢ for PC in a test with the strain rate ¢, = 0.1 min~'. (Q) experimental
data (Quinson et al., 1996). (=) results of numerical simulation.
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Fig. 6. Viscoplastic compressive strain €, versus compressive strain e for PC in a test with the strain rate ¢, = 0.1 min~'. (=) results of
numerical simulation. (Q) residual strains after unloading with the strain rate ¢, = 1.0 min~' and A¢ = 10 min of recovery (Quinson
et al., 1996).

For comparison, observations are presented for the residual strain after unloading and recovery for
At = 10 min. Fig. 6 reveals that the slope of the curve ¢,(¢) is close to that for the experimental curve . (e).
The deviations between results of numerical analysis and measurements may be explained by recovery after
unloading. Their level is in quantitative agreement with data for high density polyethylene (Zhang and
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Moore, 1997) which show that recovery after unloading even for Az = 1 min results in changes in the re-
sidual strains by 0.03 (the same level of discrepancy between observations and numerical results which is
observed in Fig. 6).

We proceed with the approximation of stress—strain curves for PMMA in compressive tests with con-
stant strain rates at ambient temperature. First, observations presented by Berthoud et al. (1999) are
matched with the help of the parameters I'y and X found by fitting experimental data in the relaxation test
(Table 1). The quantities £y, gy, k and { are determined from the condition of the best fit of experimental
data. The constants k and { are found in the test with the highest strain rate ¢ = 0.01 s~! and are employed
without changes to match data in tests with other strain rates. Any stress—strain curve is approximated by
using only two adjustable parameters, E, and g,. Fig. 7 shows fair agreement between experimental data
and results of numerical simulation for strain rates in the interval from 10~ to 1072 s7!,

The initial Young modulus, Ey, and the strength of links at the beginning of the stage of coalescence of
defects, go, are plotted versus the strain rate é, in Fig. 8. Experimental data are fairly well approximated by
Eq. (40) and the phenomenological equation

E() :b0—|—b1 logéo. (41)

The constants a; and b; in Egs. (40) and (41) are calculated by the least-squares method.

Formulas (40) and (41) coincide with the conventional relations for the description of the effect of strain
rate on the yield stress in glassy polymers (Bauwens-Crowet, 1969; Bauwens-Crowet et al., 1973). These
equations are in agreement with the proposed scenario for nucleation of defects: rapid loading provides
insufficient time for creation of QPDs which implies that the number of defects at the beginning of the stage
of their coalescence is relatively small. This fact, in turn, results in a rather high strength of links and a
rather large initial elastic modulus. On the contrary, slow loading implies that a large number of QPDs are
nucleated which implies a decrease in the strength of links and initial Young’s modulus of the bulk material.
It should be stressed that Egs. (40) and (41) are merely phenomenological and may be employed to match
observations within a limited range of strain rates only.

120.0
1
2
3
p 4
L S O v O ——
0.0 1 1 | L 1
0.0 € 0.12

Fig. 7. Compressive stress o (MPa) versus compressive strain ¢ for PMMA in a test with the strain rate é, (s7!). (O) experimental data
(Berthoud et al., 1999). (==) results of numerical simulation. Curve 1: ¢ = 1072; curve 2: ¢ = 5 x 1073; curve 3: ¢ = 1073; curve 4:
¢=5x%x10"% curve 5: ¢ = 107*.
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Fig. 8. The elastic modulus E, (GPa) (0O) and the strength of links g, (MPa) (@) at the beginning of the stage of coalescence of defects
versus the strain rate ¢, (min~!) for PMMA. Symbols: treatment of observations (Berthoud et al., 1999). (==) approximation of the
experimental data by Eqs. (40) and (41) with ay = 19.90, a; = 2.07 and by, = 3.70, b; = 0.46.

Fair fitting of experimental data is established for PC when the initial Young modulus Ej is taken from
observations in the relaxation test, while for PMMA the quantity E, is treated as a function of the strain
rate €. This conclusion is in qualitative agreement with experimental data in dynamic mechanical tests that
demonstrate that cyclic plastic loading weakly affects the storage modulus of PC (Figs. 3 and 5 in G’Sell
et al. (1989)), whereas the storage modulus of PMMA dramatically decreases in the post-yield region (Figs.
1 and 2 in Yoshioka et al. (1994)). To explain this discrepancy, we refer to Xiao et al. (1994) where it is
shown that PC is a type II polymer that is relatively ductile and undergoes extensive shear yielding at
ambient temperature, whereas PMMA is a type I polymer that is relatively brittle and undergoes crazing.
The difference in the mechanical response of these polymers may be ascribed to main-chain motion in PC
which is highly restricted by entanglements between side groups in PMMA.

At first sight, the fact that the parameters E, and g, (which are conventionally thought of as material
constants) are affected by the strain rate, ¢;, seems as a shortcoming of the model. It is worth noting,
however, that the elastic modulus Ej is expressed in terms of the rigidity, ¢, by the formula Ey = pcyX,
whereas the average rigidity of a CRR, ¢, and the average strength of an ensemble of links, gy, are de-
termined as appropriate characteristics of a glassy polymer at the end of the stage of nucleation of QPDs.
This implies that the parameters E, and g, are treated within the model not as material constants for a
virgin specimen, but as characteristics of a preconditioned polymer, whose dependence on the rate of
loading at the stage of nucleation of defects seems quite natural.

To assess the level of plastic strains, we approximate experimental data in a uniaxial compressive test on
PMMA with the strain rate ¢y = 0.1 min~! at room temperature. A detailed description of the experimental
procedure is provided by Quinson et al. (1996). The same algorithm of fitting is employed as for the ex-
perimental data exposed in Berthoud et al. (1999). Fig. 9 demonstrates excellent agreement between ob-
servations and results of numerical simulation. The parameters E,, k and { found by approximation of
measurements for the two grades of PMMA are quite close to each other (Table 3). The viscoplastic strain
¢p 18 plotted versus the longitudinal strain e in Fig. 10. The results of numerical simulation are in qualitative
agreement with the graph of the function e,(e) calculated for PC (Fig. 6). The slope of the experimental
curve ¢ (€) coincides with that for the theoretical dependence ¢,(¢). As in the case of PC, the discrepancies



A.D. Drozdov | International Journal of Solids and Structures 38 (2001) 8285-8304 8301

120.0

0.0 ] 1 ] 1 1 1 !
0.0 € 0.16

Fig. 9. Compressive stress ¢ (MPa) versus compressive strain € for PMMA in a test with the strain rate ¢ = 0.1 min~'. (Q) experi-
mental data (Quinson et al., 1996). (==) results of numerical simulation.

Table 3

Adjustable parameters for two grades of PMMA found by matching observations in compressive tests with constant strain rates
Reference éo (min~") E, (GPa) g0 k ¢
Berthoud et al. (1999) 0.006 2.80 15.5 74.0 0.40
Berthoud et al. (1999) 0.03 3.04 16.7 74.0 0.40
Berthoud et al. (1999) 0.06 3.25 17.1 74.0 0.40
Berthoud et al. (1999) 0.3 3.55 18.7 74.0 0.40
Berthoud et al. (1999) 0.6 3.70 19.7 74.0 0.40
Quinson et al. (1996) 0.1 3.56 18.8 70.0 0.25

between observations and results of numerical analysis may be ascribed to strain recovery after unloading.
At first glance, the divergence should not be so large because of the small waiting time after unloading
(At = 5 s). It is noteworthy, however, that at relatively large viscoplastic strains, the characteristic rate of
relaxation drastically increases, see Eq. (35), which implies that even 5 s of recovery is sufficient for sub-
stantial changes in residual strains. To confirm this statement, we refer to data for polyethylene (Zhang and
Moore, 1997) which demonstrate that at the maximal strain of 0.15, Ar = 4.3 s of recovery in the unloading
mode increases the residual strain from 0.078 to 0.125.

Results of numerical simulation for the viscoplastic strain are compared in Figs. 6 and 10 with residual
strains after unloading and waiting for a time A¢. A natural question arises about the direct comparison of
observations with the calculated values of residual strains. This comparison is, however, a cumbersome task
because numerical analysis of residual strains requires the account for the influence of viscoplastic defor-
mations on relaxation spectra of glassy polymers. The latter effect has not yet been examined in detail either
experimentally or theoretically.

It is worth noting that the model parameters are fitted to experimental data in short-term tests (with the
characteristic time of about 10? s). This implies that some interesting phenomena associated with (possible)
mechanically induced aging of specimens (observed in experiments on rubbery polymers, see Clarke et al.
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Fig. 10. Viscoplastic compressive strain ¢, versus compressive strain ¢ for PMMA in a test with the strain rate éo = 0.1 min~!. (=)
results of numerical simulation. () residual strains after unloading with the strain rate ¢, = 1.0 min~' and Az =5 s of recovery
(Quinson et al., 1996).

(2000)) remain beyond the scope of the present study. Our recent analysis of long-term observations
(Drozdov and Kaschta, 2001) reveals, however, that the proposed approach provides fair agreement be-
tween results of numerical simulation and experimental data in long-term creep tests (with the duration of
10° s) on polystyrene and PMMA near the glass transition point.

5. Concluding remarks

A constitutive model has been derived for the viscoelastic and viscoplastic responses of amorphous
glassy polymers at isothermal uniaxial loading with small strains. A polymer is treated as an ensemble of
cooperatively rearranged regions bridged by less cohesive space. At the macro-level, thermally induced
rearrangement of CRRs is associated with the viscoelastic behavior, whereas mechanically induced nu-
cleation and coalescence of defects in the less cohesive domains (driven by disentanglement and scission of
chains) reflect the viscoplastic response. Stress—strain relations are developed using the laws of thermo-
dynamics. Constitutive equations contain a relatively small number of adjustable parameters (seven) that
are found by fitting observations in standard relaxation tests and tests with constant strain rates. Fair
agreement is demonstrated between results of numerical simulation and experimental data for PC and
PMMA.

The paper exposes results of a preliminary study on the viscoelastic and viscoplastic behavior of glassy
polymers. In particular, the kinetics of nucleation of quasi-point defects is disregarded and its effect on the
mechanical response of solid polymers is replaced by phenomenological dependences of the influence of the
strain rate on average quantities £, and go. Only experimental data at ambient temperature are used to
determine material constants in the constitutive equations, which implies that the effect of temperature on
adjustable parameters is not evaluated. The study is confined to rather simple loading programs: relaxation
and uniaxial tension (compression) with constant strain rates, which means that the validity of the model to
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predict observations in mechanical tests with more complicated (time dependent) protocols of straining has
not yet been assessed. The stress—strain equations are verified by fitting observations only for two materials
(PC and PMMA); the applicability of these relations for matching data for other glassy polymers remains
unclear. These questions will be the subject of a subsequent work.
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